您当前的位置:首页 > 新闻中心 > 百科知识

二十六维空间是什么 我们生活在几维空间

时间:2018-03-14 07:56:18  

  那么四维空间如何形象的和三维空间产生联系呢?毕竟三维空间是我们人类最最熟悉的空间结构。我们知道三维空间有X轴,Y轴,Z轴,那么它们三条轴线能把整个空间分为6个面,上下,左右,前后。那四维空间还能怎么划分空间呢?它比三维空间还多出了里外,两个方向。里面的上面,和外面的上面是不同的空间。虽然在三维空间中都是上面。

  同理,我们将这些理论继续推广到高维空间中,那么一定存在一条线能垂直于n-1条线,并且n-1条线也是相互垂直相交的。

  以上就是通过空间划分的角度来描述多维空间。

  高维空间事物的形态

  在高维空间中,事物都是非常抽象的,可能无法用图形画出来,但是我们可以通过我们能理解的低维空间去理解高维,这就需要研究高维空间事物在低维空间的展现形态了。

  在二维空间中,正三角形有三个顶点。并且假设边长都等于1。如果在空间中存在第四个点,能使得这个点到三个顶点的距离都等于1。那么这个点必定不存在在二维空间中,且一定存在于三维空间中(此处数学证明省略,太难了,感兴趣的同学可以证明一下)。如果在三维空间中把这四个点都连接起来,那么就可以构成一个三维的正四面体。

  同理,如果有第五个点能和这个三维的正四面体距离都是1,那么这个点也一定存在于四维空间中,与三维的正四面体一起构成四维的超四面体。

  超四面体已经超出了我们生活的维度了,所以我们无法在三维空间中画中它的形状。但是我们可以通过投影的方式来在三维空间中去观察它。

  先来回顾一点三维的正四面体是怎么产生的。由于是等边三角形,所以等边三角形的垂心到三个顶点的距离一定是相等的。那么我们就把这个内心取出来,拉到三维空间中,直到距离其他三个顶点的距离为1。这样就生成了三维的正四面体。由垂心分割的内部三个钝角三角形跟随着垂心的,拉出去就会变成正四面体外面的3个面。

  同理,在三维的正四面体的中,取出它的垂心。垂心与四个顶点的距离都相等。这个垂心就将正四面体在内部分割成了4个扁四面体。那么将垂心拉到四维空间中做第五个顶点的话,就会变成超四面体。内部分割的4个扁四面体也会进化成超四面体的四个外表面。

  四维的超四面体是5个顶点,10条棱边,10个三角面,5个四面体构成的超体。用三维空间无法描述它。

  正方体是我们常见的三维物体。那四维空间里面的立方体变成什么样子了呢?

  上图就是四维空间里面的立方体,叫超立方体。

  上图反映出四维方体每条边等长,也可以看出立方体如何互相连接的。构造一个超立方体的最简单的步骤就是把2个立方体的8个顶点都分别和另外一个超立方体的顶点连接起来。

来顶一下
返回首页
返回首页
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐资讯
相关文章
    无相关信息
栏目更新
栏目热门